
Bit-Error-Rate Simulation Using Matlab

James E. Gilley

Chief Scientist

Transcrypt International, Inc.

jgilley@transcrypt.com

August , 

 Introduction

Matlab is an ideal tool for simulating digital communications systems, thanks to

its easy scripting language and excellent data visualization capabilities. One of the

most frequent simulation tasks in the field of digital communications is bit-error-

rate testing of modems. The bit-error-rate performance of a receiver is a figure of

merit that allows different designs to be compared in a fair manner. Performing

bit-error-rate testing with Matlab is very simple, but does require some prerequisite

knowledge.

 Properties of Sampled Signals

In Matlab, we represent continuous-time signals with a sequence of numbers, or

samples, which are generally stored in a vector or an array. Before we can perform a

bit-error-rate test, we must precisely understand the meaning of these samples. We

must know what aspect of the signal the value of these samples represents. We must

also know the time interval between successive samples.

For communications simulations, the numeric value of the sample represents

the amplitude of the continuous-time signal at a specific instant in time. We as-

sume this amplitude is a measurement of voltage, though it could just as easily be a

measurement of current.

The time between successive samples is, by definition, Ts . This tells us how often

the continuous-time signal was sampled. Instead of specifying Ts , we usually specify

the sampling frequency, fs , which is the inverse of Ts .

For convenience, we will always associate a sample value of 1.0 with a voltage

of exactly one volt. Furthermore, we will always assume a resistance of exactly one

ohm. This allows us to dispense with the notion of resistance altogether. For our

simulations, we will represent a continuous time signal as an array of samples, the

numeric value of which is in units of volts, referenced to a resistance of one ohm.

Usually, the sampling frequency is  KHz, but other sampling frequencies are also in

common use, so the sampling frequency should always be specified.





. Power

Suppose we have a signal x(n), where n is an index of the sample number. We define

the instantaneous power of the signal as:

Pi ns ≡ x2(n).

In other words, the instantaneous power of a sample is just the value of that sample

squared. Since the units of the sample are volts, the units of the power are watts.

A far more useful quantity is the average power, which is simply the average of

the instantaneous power of every sample in the signal. For signal x(n), of N samples,

we have:

Pave ≡
1

N

N∑

n=1

x2(n). ()

Note that this is simply the sum of the square of all samples, divided by the num-

ber of samples. One way to compute the average power, ‘pav’, of signal ‘x’, using

Matlab is:

pav= sum(x.^2)/length(x).

If our signal has a mean of zero, or in other words, no DC component, we can

find the average power of the signal by taking its variance. This works because:

σ(x) ≡ E[x2]− (E[x])2,

which states: the variance of a signal is the mean of its square, minus the square of

its mean. If the mean is zero, the variance is just the mean of the square, exactly the

same as the average power. Therefore, if a signal has no DC value, we can compute

its average power by finding its variance.

We need to be careful using the variance to find the average power of a signal.

This technique only works if the mean of the signal is zero. If the mean is not zero,

we must use (), which always works, regardless of whether the mean is zero or not.

. Energy

By definition, power is the time derivative of energy; or equivalently, energy is the

time integral of power. For sampled signals, integration reduces to a summation.

Since energy is the product of power and time, the total energy of a signal must

be equal to its average power multiplied by its duration. Furthermore, the duration

of a signal is its length in samples, divided by the sampling frequency, in samples

per second. Therefore:

Et ot = Pave · t ,

=
1

N

N∑

n=1

x2(n) ·
N

fs
,

=
1

fs

N∑

n=1

x2(n). ()





The Matlab command for finding the total energy, ‘et’, of signal ‘x’, that has sam-

pling rate ‘fs’, is:

et= sum(x.^2)/fs.

 Simulation Overview

Bit-error-rate testing requires a transmitter, a receiver, and a channel. We begin by

generating a long sequence of random bits, which we provide as input to the trans-

mitter. The transmitter modulates these bits onto some form of digital signaling,

which we will send though a simulated channel. We simulate the channel by adding

a controlled amount of noise to the transmitted signal. This noisy signal then be-

comes the input to the receiver. The receiver demodulates the signal, producing a

sequence of recovered bits. Finally, we compare the received bits to the transmitted

bits, and tally up the errors.

Bit-error-rate performance is usually depicted on a two dimensional graph. The

ordinate is the normalized signal-to-noise ratio (SNR) expressed as Eb /N0: the energy-

per-bit divided by the one-sided power spectral density of the noise, expressed in

decibels (dB). The abscissa is the bit-error-rate, a dimensionless quantity, usually

expressed in powers of ten.

To create a graph of bit-error-rate versus SNR, we plot a series of points. Each of

these points requires us to run a simulation at a specific value of SNR. To obtain the

bit-error-rate at a specific SNR, we follow the procedure given below.

 Simulation Procedure

. Run Transmitter

The first step in the simulation is to use the transmitter to create a digitally mod-

ulated signal from a sequence of pseudo-random bits. Once we have created this

signal, x(n), we need to make some measurements of it.

. Establish SNR

The signal-to-noise-ratio (SNR), Eb /N0, is usually expressed in decibels, but we must

convert decibels to an ordinary ratio before we can make further use of the SNR. If

we set the SNR to m dB, then Eb/N0 = 10m/10.

Using Matlab, we find the ratio, ‘ebn0’, from the SNR in decibels, ‘snrdb’, as:

ebn0= 10^(snrdb/10).

Note that Eb/N0 is a dimensionless quantity.

. Determine Eb

Energy-per-bit is the total energy of the signal, divided by the number of bits con-

tained in the signal. We can also express energy-per-bit as the average signal power





multiplied by the duration of one bit. Either way, the expression for Eb is:

Eb =
1

N · fbi t

N∑

n=1

x2(n),

where N is the total number of samples in the signal, and fbi t is the bit rate in bits-

per-second.

Using Matlab, we find the energy-per-bit, ‘eb’, of our transmitted signal, ‘x’, that

has a bit rate ‘fb’, as:

eb= sum(x.^2)/(length(x)∗fb).

Since our signal, x(n), is in units of volts, the units of Eb are Joules.

. Calculate N0

With the SNR and energy-per-bit now known, we are ready to calculate N0, the one-

sided power spectral density of the noise. All we have to do is divide Eb by the SNR,

providing we have converted the SNR from decibels to a ratio.

Using Matlab, we find the power spectral density of the noise, ‘n0’, given energy-

per-bit ‘eb’, and SNR ‘ebn0’, as:

n0= eb/ebn0.

The power spectral density of the noise has units of Watts per Hertz.

. Calculate σn

The one-sided power spectral density of the noise, N0, tells us how much noise

power is present in a 1.0 Hz bandwidth of the signal. In order to find the variance, or

average power, of the noise, we must know the noise bandwidth.

For a real signal, x(n), sampled at fs Hz, the noise bandwidth will be half the

sampling rate. Therefore, we find the average power of the noise by multiplying the

power spectral density of the noise by the noise bandwidth:

σn =
N0 · fs

2
,

where σn is the noise variance in W, and N0 is the one-sided power spectral density

of the noise in W/Hz.

Using Matlab, the average noise power, ‘pn’, of noise having power spectral den-

sity ‘n0’, and sampling frequency ‘fs’, is calculated as:

pn= n0∗fs/2.

The average noise power is in units of Watts.





. Generate Noise

Although the communications toolbox of Matlab has functions to generate additive

white Gaussian noise, we will use one of the standard built-in functions to generate

AWGN. Since the noise has a zero mean, its power and its variance are identical. We

need to generate a noise vector that is the same length as our signal vector x(n), and

this noise vector must have variance σn W.

The Matlab function ‘randn’ generates normally distributed random numbers

with a mean of zero and a variance of one. We must scale the output so the result

has the desired variance, σn . To do this, we simply multiply the output of the ‘randn’

function by
p
σn . We can generate the noise vector ‘n’, as:

n= sqrt(pn)∗randn(1,length(x));.

Like the signal vector, the samples of the noise vector have units of volts.

. Add Noise

We create a noisy signal by adding the noise vector to the signal vector. If we are run-

ning a fixed-point simulation, we will need to scale the resulting sum by the recip-

rocal of the maximum absolute value, so the sum stays within amplitude limits of

±1.0. Otherwise, we can simply add the signal vector ‘x’ to the noise vector ‘n’ to

obtain the noisy signal vector ‘y’ as:

y= x+n;.

. Run Receiver

Once we have created a noisy signal vector, we use the receiver to demodulate this

signal. The receiver will produce a sequence of demodulated bits, which we must

compare to the transmitted bits, in order to determine how many demodulated bits

are in error.

. Determine Offset

Due to filtering and other delay-inducing operations typical of most receivers, there

will be an offset between the received bits and the transmitted bits. Before we can

compare the two bit sequences to check for errors, we must first determine this off-

set. One way to do this is by correlating the two sequences, then searching for the

correlation peak.

Suppose our transmitted bits are stored in vector ‘tx’, and our received bits are

stored in vector ‘rx’. The received vector should contain more bits than the trans-

mitted vector, since the receiver will produce (meaningless) outputs while the filters

are filling and flushing. If the length of the transmitted bit vector is lt x , and the

length of the received vector is lr x , the range of possible offsets is between zero and

lr x − lt x −1. We can find the offset by performing a partial cross-correlation between

the two vectors.





Using Matlab, we can create a partial cross-correlation, ‘cor’, from bit vectors ‘tx’

and ‘rx’, with the following loop:

for lag= 1 : length(rx)−length(tx)−1,

cor(lag)= tx∗rx(lag : length(tx)−1+lag)′;

end.

The resulting vector, ‘cor’, is a partial cross-correlation of the transmitted and

received bits, over the possible range of lags: 0 : lr x − lt x −1.

We need to find the location of the maximum value of ‘cor’, since this will tell

us the offset between the bit vectors. Since Matlab numbers array elements as 1 : N

instead of as 0 : N−1, we need to subtract one from the index of the correlation peak.

Using Matlab, we find the correct bit offset, ‘off’, as:

off= find(cor== max(cor))−1.

. Create Error Vector

Once we know the offset between the transmitted and received bit vectors, we are

ready to calculate the bit errors. For bit values of zero and one, a simple difference

will reveal bit errors. Wherever there is a bit error, the difference between the bits

will be ±1, and wherever there is not a bit error, the difference will be zero.

Using Matlab, we calculate the error vector, ‘err’, from the transmitted bit vector,

‘tx’, and the received bit vector, ‘rx’, having an offset of ‘off’, as:

err= tx−rx(off+1 : length(tx)+off);.

. Count Bit Errors

The error vector, ‘err’ contains non-zero elements in the locations where there were

bit errors. We need to tally the number of non-zero elements, since this is the total

number of bit errors in this simulation.

Using Matlab, we calculate the total number of bit errors, ‘te’, from the error vec-

tor ‘err’ as:

te= sum(abs(err)).

. Calculate Bit-Error-Rate

Each time we run a bit-error-rate simulation, we transmit and receive a fixed num-

ber of bits. We determine how many of the received bits are in error, then compute

the bit-error-rate as the number of bit errors divided by the total number of bits in

the transmitted signal.

Using Matlab, we compute the bit-error-rate, ‘ber’, as:

ber= te/length(tx),

where ‘te’ is the total number of bit errors, and ‘tx’ is the transmitted bit vector.





 Simulation Results

Performing a bit-error-rate simulation can be a lengthy process. We need to run

individual simulations at each SNR of interest. We also need to make sure our results

are statistically significant.

. Statistical Validity

When the bit-error-rate is high, many bits will be in error. The worst-case bit-error-

rate is  percent, at which point, the modem is essentially useless. Most communi-

cations systems require bit-error-rates several orders of magnitude lower than this.

Even a bit-error-rate of one percent is considered quite high.

We usually want to plot a curve of the bit-error-rate as a function of the SNR,

and include enough points to cover a wide range of bit-error-rates. At high SNRs,

this can become difficult, since the bit-error-rate becomes very low. For example,

a bit-error-rate of 10−6 means only one bit out of every million bits will be in error.

If our test signal only contains  bits, we will most likely not see an error at this

bit-error-rate.

In order to be statistically significant, each simulation we run must generate

some number of errors. If a simulation generates no errors, it does not mean the

bit-error-rate is zero; it only means we did not have enough bits in our transmitted

signal. As a rule of thumb, we need about  (or more) errors in each simulation, in

order to have confidence that our bit-error-rate is statistically valid. At high SNRs,

this can require a test signal containing millions, or even billions of bits.

. Plotting

Once we perform enough simulations to obtain valid results at all SNRs of interest,

we will plot the results. We begin by creating vectors for both axes. The X-axis vector

will contain SNR values, while the Y-axis vector will contain bit-error-rates. The Y-

axis should be plotted on a logarithmic scale, whereas the X-axis should be plotted

on a linear scale.

Supposing our SNR values are in vector ‘xx’, and our corresponding bit-error-rate

values are in vector ‘yy’, we use Matlab to plot:

semilogy(xx,yy,′o′).

Fig.  shows an example of a plot of the results of a bit-error-rate simulation.

ggg





1 2 3 4 5 6 7 8
10

−4

10
−3

10
−2

10
−1

E
b
/N

0
 (dB)

bi
t e

rr
or

 r
at

e

Figure : Typical Bit-Error-Rate Plot




