

This article (“Convolutional Codes”) appears in the Wiley
Encyclopedia of Telecommunications (0-471-36972-1).

The copyright for the article is owned by Wiley:
Copyright 2003 by John Wiley & Sons Inc.

This material is used by permission of John Wiley & Sons, Inc.

EOT309REV

CONVOLUTIONAL CODES

RICHARD D. WESEL

University of California at
Los Angeles
Los Angeles, California

1. INTRODUCTION

Convolutional codes represent one technique within the
general class of channel codes. Channel codes (also called
error-correction codes) permit reliable communication
of an information sequence over a channel that adds
noise, introduces bit errors, or otherwise distorts the
transmitted signal. Elias [1,2] introduced convolutional
codes in 1955. These codes have found many applications,
including deep-space communications and voiceband
modems. Convolutional codes continue to play a role in
low-latency applications such as speech transmission and
as constituent codes in Turbo codes. Two reference books
on convolutional codes are those by Lin and Costello [3]
and Johannesson and Zigangirov [4].

Section 2 introduces the shift-register structure of con-
volutional encoders including a discussion of equivalent
encoders and minimal encoders. Section 3 focuses on the
decoding of convolutional codes. After a brief mention
of the three primary classes of decoders, this section
delves deeply into the most popular class, Viterbi decoders.
This discussion introduces trellis diagrams, describes the
fundamental add-compare-select computation, compares
hard and soft decoding, and describes the suboptimal (but
commonly employed) finite traceback version of Viterbi
decoding.

Section 4 defines the free distance of a convolutional
code and describes how free distance may be computed by
a specialized application of the Viterbi algorithm. This
procedure also yields an analytic lower bound on the
decision depth that should be used for finite-traceback
decoding. Catastrophic encoders are also discussed in this
section. Section 5 describes the generating function that
enumerates all the paths associated with error events in
the decoder trellis. This section then gives union bounds
on bit error rate that are computed from the generating
function. Section 6 provides some final remarks regarding
the effective blocklength of convolutional codes and their
role today.

2. ENCODER STRUCTURE

As any binary code, convolutional codes protect informa-
tion by adding redundant bits. A rate-k/n convolutional
encoder processes the input sequence of k-bit informa-
tion symbols through one or more binary shift registers
(possibly employing feedback). The convolutional encoder
computes each n-bit symbol (n > k) of the output sequence
from linear operations on the current input symbol and
the contents of the shift register(s). Thus, a rate k/n
convolutional encoder processes a k-bit input symbol and
computes an n-bit output symbol with every shift register
update. Figures 1 and 2 illustrate feedforward and feed-
back encoder implementations of a rate- 1

2 code. Section 2.1

Input

LSB

Outputs

MSB

+

+

D

+

D

Figure 1. Rate- 1
2 feedforward convolutional encoder with two

memory elements (four states). MSB and LSB refer to the most
and least significant bits, respectively.

Input

LSB

MSB

Outputs

+D+D+

Figure 2. Rate- 1
2 feedback convolutional encoder with two

memory elements (four states).

explores the similarities and differences between feedfor-
ward and feedback encoders by examining their state
diagrams.

2.1. Equivalent Encoders

Convolutional encoders are finite-state machines. Hence,
state diagrams provide considerable insight into their
behavior. Figures 3 and 4 provide the state diagrams for
the encoders of Figs. 1 and 2, respectively. The states
are labeled so that the least significant bit is the one
residing in the leftmost memory element of the shift
register. The branches are labeled with the 1-bit (single-
bit) input and the 2-bit output separated by a comma. The
most significant bit (MSB) of the two-bit output is the bit
labeled MSB in Figs. 1 and 2.

If one erases the state labels and the single-bit input
labels, the remaining diagrams for Figs. 3 and 4 (labeled
with only the 2-bit outputs) would be identical. This
illustrates that the two encoders are equivalent in the

0,00

0,10

0,01

0,11
1,11

1,00

1,01

1,10

11

01

00

10

Figure 3. State diagram for rate- 1
2 feedforward convolutional

encoder of Fig. 1.

1

EOT309REV

2 CONVOLUTIONAL CODES

0,00

1,10

0,01

1,11
1,11

0,00

0,01

1,10

10

00

01

11

Figure 4. State diagram for rate- 1
2 feedback convolutional

encoder of Fig. 2.

sense that both encoders produce the same set of possible
output sequences (or codewords). Strictly speaking, a
code refers to the list of possible output sequences
without specifying the mapping of inputs sequences to
output sequences. Thus, as in the above example, two
equivalent encoders have the same set of possible output
sequences, but may implement different mappings from
input sequences to output sequences. In the standard
convolutional coding application of transmission over
additive white Gaussian noise (AWGN) with Viterbi
decoding, such encoders give similar BER performance,
but the different mappings of inputs to outputs do lead to
small performance differences.

The three-branch paths emphasized with thicker
arrows in Figs. 3 and 4 are each the shortest nontrivial
(i.e., excluding the all-zeros self-loop) loop from the all-
zeros state back to itself. Notice that for Fig. 3, the state
diagram corresponding to the feedforward encoder, this
loop requires only a single nonzero input. In contrast,
for the state diagram corresponding to Fig. 4, this loop
requires three nonzero inputs. In fact, for Fig. 4 no
nontrivial loop from the all-zeros state to itself requires
fewer than two nonzero inputs. Thus the feedforward shift
register has a finite impulse response, and the feedback
shift register has an infinite impulse response.

This difference is not particularly important for con-
volutional codes decoded with Viterbi, but it is extremely
important to convolutional encoders used as constituents
in Turbo codes, which are constructed by concatenat-
ing convolutional codes separated by interleavers. Only
feedback encoders (with infinite impulse responses) are
effective constituents in Turbo codes. Thus, equivalent
encoders can produce dramatically different performance
as constituents in Turbo codes, depending on whether or
not they meet the requirement for an infinite impulse
response.

2.2. Minimal Encoders

A practical question to ask about a convolutional encoder
is whether there is an equivalent encoder with fewer
memory elements. This question may be answered by
performing certain diagnostic computations on the encoder
matrix. Furthermore, if the encoder is not minimal,
it may be easily ‘‘repaired’’ yielding an encoder that
is equivalent but requires fewer memory elements.

Forney’s classic paper [5] treats this fundamental area
of convolutional coding theory elegantly. More recently,
Johannesson and Wan [6] extended Forney’s results by
taking a linear algebra approach. This fascinating area of
convolutional code theory is important to convolutional
code designers, but less so for ‘‘users.’’ Any code
published in a table of good convolutional codes will be
minimal.

3. DECODING CONVOLUTIONAL CODES

Convolutional code decoding algorithms infer the values of
the input information sequence from the stream of received
distorted output symbols. There are three major families
of decoding algorithms for convolutional codes: sequential,
Viterbi, and maximum a posteriori (MAP). Wozencraft
proposed sequential decoding in 1957 [7]. Fano in 1963 [8]
and Zigangirov in 1966 [9] further developed sequential
decoding. See the book by Johannesson and Zigangirov [4]
for a detailed treatment of sequential decoding algorithms.
Viterbi originally described the decoding algorithm that
bears his name in 1967 [10]. See also Forney’s work [11,12]
introducing the trellis structure and showing that Viterbi
decoding is maximum-likelihood in the sense that it
selects the sequence that makes the received sequence
most likely.

In 1974, Bahl et al. [13] proposed MAP decoding, which
explicitly minimizes bit (rather than sequence) error rate.
Compared with Viterbi, MAP provides a negligibly smaller
bit error rate (and a negligibly larger sequence error rate).
These small performance differences require roughly twice
the complexity of Viterbi, making MAP unattractive for
practical decoding of convolutional codes. However, MAP
decoding is crucial to the decoding of Turbo codes. For
the application of MAP decoding to Turbo codes, see the
original paper on Turbo codes by Berrou et al. [14] and
Benedetto et al.’s specific discussion of the basic turbo
decoding module [15].

When convolutional codes are used in the traditional
way (not as constituents in Turbo codes), they are almost
always decoded using some form of the Viterbi algorithm,
and the rest of this section focuses on describing Viterbi.
The goal of the Viterbi algorithm is to find the transmitted
sequence (or codeword) that is closest to the received
sequence. As long as the distortion is not too severe, this
will be the correct sequence.

3.1. Trellis Diagrams

The state diagrams of Figs. 3 and 4 illustrate what
transitions are possible from a particular state regardless
of time. In contrast, trellis diagrams use a different branch
for each different symbol time. As a result, trellis diagrams
more clearly illustrate long trajectories through the states.
Figure 5 shows one stage (one symbol time) of the trellis
diagram associated with the rate- 1

2 feedforward encoder of
Figs. 1 and 3. Each column of states in the trellis diagram
includes everything in the original state diagram. All the
branches emanating from states in a particular column
are incident on the states in the adjacent column to the

EOT309REV

CONVOLUTIONAL CODES 3

0,00

1,10

0,00
0,11

1,11
1,00

0,10
0,01

1,01
1,10

1,11

0,10
1,01

0,01

1,00
0,11

00

01

10

11

00

01

10

11

Figure 5. One stage of the trellis diagram for rate- 1
2 feedforward

convolutional encoder of Figs. 1 and 3.

right. In other words, each state transition in the trellis
moves the trajectory one stage to the right.

To avoid crowding in Fig. 5, branch labels appear at
the left and right of the trellis rather than on the branch
itself. For each state, the top label belongs to the top
branch emanating from or incident to that state. Figure 6
uses thick arrows to show the same path emphasized in the
state diagram of Fig. 3. However, in Fig. 3 the beginning
and end of the path were not clear. In Fig. 6 the path
clearly begins in state 00 and then travels through 01 and
then 10 before returning to 00.

3.2. The Basic Viterbi Algorithm

The Viterbi algorithm uses the trellis diagram to compute
the accumulated distances (called the path metrics)
from the received sequence to the possible transmitted
sequences. The total number of such trellis paths grows
exponentially with the number of stages in the trellis,
causing potential complexity and memory problems.
However, the Viterbi algorithm takes advantage of the
fact that the number of paths truly in contention to have
the minimum distance is limited to the number of states
in a single column of the trellis, assuming that ties may
be arbitrarily resolved.

As an example of the Viterbi algorithm, consider trans-
mission over the binary symmetric channel (bit error
channel) where the probability of a bit error is less than 1

2 .
On such a channel, maximum likelihood decoding reduces
to finding the output sequence that differs in the fewest bit

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

Figure 6. Trellis diagram for the path emphasized in Fig. 3.

positions (has the minimum Hamming distance) from the
received sequence. For this example, assume the encoder
of Fig. 1 with the state diagram of Fig. 3 and the trellis
of Fig. 5. For simplicity, assume that the receiver knows
that the encoder begins in state 00.

Figure 7 illustrates the basic Viterbi algorithm for
the received sequence 01 01 10. Beginning at the far left
column, the only active state is 00. The circle representing
this state contains a path metric of zero, indicating that as
yet, the received sequence differs from the possible output
sequences in no bit positions. Follow the two branches
leaving the first column to the active states in the second
column of the trellis. Branch metrics label each branch,
indicating the Hamming distance between the received
symbol and the symbol transmitted by the encoder when
traversing that branch. The two hypothetical transmitted
symbols are 00 for the top branch and 11 for the bottom
(see Fig. 5). Since both differ in exactly one bit position
from the received symbol 01, both branch labels are one.

The path metric for each destination state is the sum
of the branch metric for the incident branch and the path
metric at the root of the incident branch. In the second
column, both path metrics are one since the root path
metric is zero. These equal path metrics indicate that no
path is favored at this point. Now follow the branches
from the second column to the third. Exactly one branch
reaches each state in the third column. Once again, adding
the branch metric and the associated root path metric
produces the new path metric.

When following branches from the third column to the
fourth, two branches are incident on each state. Only the
path with the minimum path metric needs to survive. For
example, state 00 (the top state) in the fourth column has
a path incident from state 00 in the third column with
a path metric of 2 + 1 = 3. It also has a path incident
from state 10 in the third column with a path metric of
3 + 1 = 4. Only the path with the smaller path metric
needs to survive. Figure 7 shows the incident branches
of survivor paths with thicker arrows than nonsurvivor
paths. Each state in the fourth column has exactly one
survivor path, and the values shown indicate the path
metrics of the survivor paths.

01 01 10

1
1

0

0

2

1

2

11

1 1 1

2

0

1

1

2

2

1

3 2

3

3

1

0

Figure 7. Illustration of the basic Viterbi algorithm on the bit
error channel. This is also the trellis for hard Viterbi decoding on
the AWGN channel in contrast to the soft Viterbi decoding shown
in Fig. 8.

EOT309REV

4 CONVOLUTIONAL CODES

After all received symbols have been processed, the
final step in decoding is to examine the last column and
find the state containing the smallest path metric. This is
state 11, the bottom state, in the fourth column. Following
the survivor branches backward from the minimum-path-
metric state identifies the trellis path of the maximum
likelihood sequence. Reference to Fig. 5 reveals that
the maximum likelihood path is the state trajectory
00 → 01 → 11 → 11. This state trajectory produces the
output symbol sequence 11 01 10, which differs in exactly
one bit position from the received sequence as indicated by
its path metric. The input information sequence is decoded
to be 1 1 1.

In this short example, only one trellis stage required
path selection. However, once all states are active, path
selection occurs with each trellis stage. In fact, if the
initial encoder state is not known, path selection occurs
even at the very first trellis stage. The basic computational
module of the Viterbi algorithm is an add-compare-select
(ACS) module. Adding the root path metric and incident
branch metric produces the new path metric. Comparing
the contending path metrics allows the decoder to select
the one with minimum distance. When there is a tie (where
two incident paths have the same path metric), a surviving
path may be arbitrarily selected. In practice, ties are not
uncommon. However, ties usually occur between paths
that are ultimately destined to be losers.

3.3. Hard versus Soft Decoding

The integer branch and path metrics of the binary error
channel facilitate a relatively simple example of the
Viterbi algorithm. However, the AWGN channel is far
more common than the bit error channel. For the AWGN
channel, binary phase shift keying (BPSK) represents
binary 1 with 1.0 and binary 0 with −1.0. These two
transmitted values are distorted by additive Gaussian
noise, so that the received values will typically be neither
1.0 nor −1.0. A novice might choose to simply quantize
each received value to the closest of 1.0 and −1.0 and
assign the appropriate binary value. This quantization
would effectively transform the AWGN channel to the
bit error channel, facilitating Viterbi decoding exactly
as described above. This method of decoding is called
hard decoding, because the receiver makes a binary (hard)
decision about each bit before Viterbi decoding.

Hard decoding performs worse by about 2 dB than
a more precise form of Viterbi decoding known as soft
decoding. Soft decoding passes the actual received values
to the Viterbi decoder. These actual values are called
soft values because hard decisions (binary decisions) have
not been made prior to Viterbi decoding. Soft Viterbi
decoding is very similar to hard decoding, but branch and
path metrics use squared Euclidean distance rather than
Hamming distance. Figure 8 works an example analogous
to that of Fig. 7 for the case where 1.0 and −1.0 are
transmitted over the AWGN channel and soft Viterbi
decoding is employed. A fixed-point implementation with
only a few bits of precision captures almost all the benefit
of soft decoding.

(−0.8,0.6) (1.2,−0.9)

0.05

3.65 3.65

4.85

8.458.45

0.05

(−1.1,0.7)

2.9 2.6 4.85

4.5
3.4

5.8

0.2

5.5

6.3

4.7

10.3

4.8

0 2.9

4.5

10.4

9.2

6.4

Figure 8. Illustration of soft Viterbi decoding.

3.4. Finite Traceback Viterbi

The maximum likelihood version of Viterbi decoding
processes the entire received sequence and then selects the
most likely path. Applications such as speech transmission
can conveniently process relatively short data packets in
this manner. However, stream-oriented applications such
as a modem connection cannot wait until the end of the
received sequence before making any decisions about the
information sequence. In such cases, a suboptimal form
of Viterbi decoding is implemented in which decisions are
made about transmitted bits after a fixed delay. This fixed
delay is called the traceback depth or decision depth of the
Viterbi decoder. The exact choice of the traceback depth is
usually determined by simulation, but there is an analytic
technique that identifies a good lower bound on what the
traceback depth should be. We will discuss this ‘‘analytic
traceback depth’’ in the next section, since its computation
is a natural by-product of computing the free distance of a
convolutional code.

Figures 9 and 10 illustrate finite traceback Viterbi
decoding. Figure 9 shows the path metrics and survivor
paths (indicated by thick arrows) for a soft Viterbi decoder
in steady state. Actually, the selection of survivor paths
and path metrics is the same for maximum-likelihood
Viterbi decoding and finite-traceback Viterbi decoding.
Figure 10 shows the distinguishing behavior of finite-
traceback Viterbi decoding. Rather than wait until the
end of the received sequence, each k-bit input symbol
is decoded after a fixed delay. In Fig. 10 this delay is
three symbols. After each update of the path metrics, the
path with the smallest metric (identified in Fig. 10 by a
thick circle) is traced back three branches and the k-bit
input symbol associated with the oldest branch is decoded.
Notice that the paths selected by this algorithm do not
have to be consistent with each other. For example, the
two paths traced back in Fig. 10 could not both be correct,
but this inconsistency does not force the decoded bits to
be incorrect.

4. FREE DISTANCE

The ultimate measure of a convolutional code’s perfor-
mance is the bit error rate (BER) or block error rate

EOT309REV

CONVOLUTIONAL CODES 5

(−1.1,0.7) (−0.8,0.6) (1.2,−0.9) (1.1,0.9)

0.1

10.3

3.2

6.3

3.0

4.6

6.4

10.4

5.6

6.4

10.4

4.8

10.5

9.3

6.5

4.9

6.5

10.5

9.3

8.5

Figure 9. Steady state soft Viterbi state updates. Survivor paths
are shown as thick arrows.

1 1

(−1.1,0.7) (−0.8,0.6) (1.2,−0.9) (1.1,0.9)

0.1

10.3

3.2

6.3

3.0

4.6

6.4

10.4

5.6

6.4

10.4

4.8

10.5

9.3

6.5

4.9

6.5

10.5

9.3

8.5

Figure 10. Finite traceback soft Viterbi decoding with a
traceback depth of 3. Only the survivor paths of Fig. 9 are shown.
Each traceback operation decodes only k = 1 bit. Thick arrows
identify two such traceback paths.

(BLER) of the code as a function of signal-to-noise ratio
(SNR). However, free distance gives a good indication of
convolutional code performance. The free distance of a con-
volutional code is the minimum distance (either Hamming
or Euclidean) between two distinct valid output sequences.
Unlike algebraic block codes, which are designed to have

specific distance properties, good convolutional codes are
identified by an exhaustive search over encoders with a
given number of memory elements. Often free distance is
the metric used in these searches.

For simplicity, we will restrict the discussion of
free distance to free Hamming distance. For BPSK,
this restriction imposes no loss of generality since the
Hamming and squared Euclidean free distances are
related by a constant.

4.1. Computation of Free Distance

The set of distances from a codeword to each of
its neighbors is the same for all codewords. Hence,
the free distance is the distance from the all-zeros
output sequence to its nearest-neighboring codeword. A
Viterbi decoding operation with some special restrictions
efficiently performs this computation. Viterbi decoding is
performed on the undistorted all-zeros received sequence,
but the first trellis branch associated with the correct
path is disallowed. Thus prevented from decoding the
correct sequence, the Viterbi algorithm identifies the
nearest-neighbor sequence. Since the received sequence
is noiseless, the path metric associated with the decoded
sequence is the distance between that sequence and the
all-zeros sequence, which is the free distance.

Figure 11 illustrates the computation of free Hamming
distance using the Viterbi algorithm for the encoder
described in Figs. 1, 3, and 5. The disallowed branch is
shown as a dashed line. Only survivor branches are shown,
and the thick branches indicate the minimum distance
survivor path. Below each column is the minimum survivor
path metric, which is called the column distance. The free
distance is formally defined as the limit of the column
distance sequence as the survivor pathlength tends to
infinity. This limit is 5 in Fig. 11.

For noncatastrophic feedforward convolutional enco-
ders, the free distance is equivalent to the minimum
distance of a path that returns to the zero state. In general,
the minimum distance path need not be the shortest path.
For encoders with more states than the simple example
of Fig. 11, there are typically several such paths having

0 2 3 3 4 4 5 5 5

0 5

3

4

4

5

4

4

4

5

4

5

5

5

5

5

5

5

5

6

6

5

6

6

6

3

3

2

Figure 11. Application of the Viterbi algorithm to identify the free Hamming distance of the code
described by Figs. 1, 3, and 5. The column distances are shown below each column. The disallowed
branch is shown as a dashed line. Only survivor paths are shown, and the minimum distance path
is shown with thick arrows.

EOT309REV

6 CONVOLUTIONAL CODES

the same minimum distance. The number of minimum-
distance paths is the number of nearest-neighbor output
sequences. This is sometimes called the multiplicity of the
free distance. If two codes have the same free distance, the
code with the smaller multiplicity is preferred.

4.2. Analytic Decision Depth

As mentioned in Section 3.4, the specific decision depth
used in finite traceback Viterbi is usually determined
by simulation. However, a good estimate of the decision
depth helps designers know where to begin simulations.
For noncatastrophic feedforward encoders, Anderson and
Balachandran [16] compute a useful lower bound on the
required decision depth as a by-product of the free-distance
computation.

This analytic decision depth is the pathlength at which
the survivor path incident on the zero state has a path
metric that is the unique minimum distance in the column.
In other words, the path metric of the survivor path to the
zero state is the only distance in the column equal to the
column distance. In Fig. 11, this analytic decision depth is
8; after the eighth branch the path metric of the survivor
path to the zero state is the only distance in the column
equal to the column distance of 5. For noncatastrophic
feedforward encoders, the Viterbi decoding procedure for
computing free distance may be stopped when the analytic
decision depth is identified. The column distance remains
fixed thereafter.

When using this analytic decision depth, finite trace-
back decoding gives performance consistent with the
first-order metrics of free distance and multiplicity. The
asymptotic performance (in the limit of high SNR) is the
same as maximum-likelihood Viterbi. In practice, a some-
what larger decision depth is often used to capture some
additional performance at SNRs of interest by improv-
ing second-order metrics of performance (i.e., distances
slightly larger than the minimum distance). For example,
the analytic decision depth of the standard rate- 1

2 64-state
feedforward convolutional encoder is 28, but simulation
results show that a decision depth of 35 gives a noticeable
performance improvement over 28. Decision depths larger
than 35 give only negligible improvement.

4.3. Catastrophic Encoders

A convolutional encoder is catastrophic if a finite number
of errors in the output sequence can cause an infinite
number of errors in the input sequence. With such an
encoder, the consequences of a decoding error can be
truly catastrophic. Catastrophic encoders are certainly
undesirable, and they are never used in practice. In fact,
they are easily avoided because they are not minimal
encoders. Hence if an encoder is catastrophic it also uses
more memory elements than does a minimal equivalent
encoder, which is not catastrophic.

An encoder is catastrophic if and only if its state
diagram has a loop with zero output weight and nonzero
input weight. Catastrophic encoders still have a free
distance as defined by the limit of the column distance,
but this free distance is seldom equal to the minimum
survivor path metric to the zero state. Usually, some of

the survivor path metrics for nonzero states never rise
above the minimum survivor path metric to the zero
state. An additional stopping rule for the Viterbi decoding
computation of free distance resolves this problem: If the
column distance does not change for a number of updates
equal to the number of states, the free distance is equal to
that column distance.

Noncatastrophic encoders may also require this addi-
tional stopping rule if they have a nontrivial zero-output-
weight loop. Such a loop does not force catastrophic
behavior if it is also a zero-input-weight loop. Such a situa-
tion only occurs with feedback encoders since feedforward
encoders do not have loops with zero output weight and
zero input weight except the trivial zero-state self-loop. In
cases where this stopping criterion is required, the ana-
lytic decision depth of Anderson and Balachandran is not
well defined. However, a practical place to start simulat-
ing decision depths is the pathlength at which the Viterbi
computation of free distance terminates.

Because nontrivial zero-output-weight lops indicate
a nonminimal encoder, their free distance is not often
computed. However, there are circumstances where
computation of the free distance is still interesting. As
described by Fragouli et al. [17], these ‘‘encoders’’ arise
not from poor design but indirectly when severe erasures
in the channel transform a minimal encoder into a weaker,
nonminimal encoder. An alternative to the additional
stopping rule is simply to compute the free distance of
an equivalent minimal encoder.

5. BOUNDS ON BIT ERROR RATE

As mentioned at the beginning of Section 4, BER and
BLER as functions of SNR are the ultimate metrics of
convolutional code performance. Monte Carlo simulation
plays an important role in the characterizing BER and
BLER performance. However, accurate characterization
by Monte Carlo simulation at very low BER or BLER,
say, less than 10−10, is not computationally feasible with
today’s technology. However, analytic upper bounds on
BER are very accurate below BER 10−5. Thus, the use
of bounds in conjunction with Monte Carlo simulation
for high BER provides a good overall performance
characterization.

5.1. The Generating Function

To facilitate the bound, a generating function or transfer
function enumerates in a single closed-form expression
all paths (including nonsurvivors) that return to the zero
state in an infinite extension of the trellis of Fig. 11.
The bound itself is analogous to the moment generating
function technique for computing expectations of random
variables. Figure 12 shows an altered version of the state
diagram of Fig. 3 where the zero state has been split
into a beginning zero state and an ending zero state.
This new diagram is called a split-state diagram. For the
bound, only the Hamming weights of input and output
symbols are needed. These Hamming weights are given
as exponents of I and W, respectively. These values
appear as exponents, so that when the labels along any

EOT309REV

CONVOLUTIONAL CODES 7

path from the beginning zero state to the ending zero
state are multiplied, the result is a single expression
IiWw, where i is the overall input Hamming weight of
the path and w is the overall output Hamming weight
of the path.

Let A be the matrix of branch labels for all branches
that neither begin nor end in a zero state. Each column of
A represents a beginning state, and each row represents
an ending state for a branch. A zero indicates no branch
between the corresponding beginning and ending states.
For Fig. 12

A =

 0 I 0

W 0 W
IW 0 IW

 (1)

Let b be the column of branch labels for all branches that
begin in the zero state. For Fig. 12

b =

 IW2

0
0

 (2)

Let c be the row of branch labels for all branches that end
in the zero state. For Fig. 12

c = [
0 W2 0

]
(3)

The shortest path from the beginning zero state to the
ending zero state has three branches; it is the path shown
by thick arrows in Fig. 11. The product of the labels for
this path may be computed as cAb = IW5. Note that the
exponent of 5 is consistent with the path metric of 5 in
Fig. 11, which is also the free distance. There is one four-
branch path and its label product is cA2b = I2W6. There
are two five-branch paths and their label products are
cA3b = I3W7 + I2W6. In general, cAL−2b gives the label
products of all L-branch paths. Thus, the equation

T(W, I) =
∞∑

L=3

cAL−2b (4)

= c(I − A)−1b (5)

enumerates the label products of all paths from the
beginning zero state to the ending zero state. Note that I is
the input weight indeterminate in Eq. (4) but the identity

W

W
IW

W 2IW 2

I

IW

11

0000 1001

Figure 12. Split-state diagram for the encoder described by
Figs. 1, 3, and 5. The exponent of W indicates the Hamming
weight of the output error symbol. The exponent of I indicates the
Hamming weight of the input error symbol.

matrix in Eq. (5). T(W, I) is the generating function (or
transfer function) of the convolutional encoder.

5.2. Union Bounds

Manipulation of T(W, I) produces upper bounds on the
BER for both the bit error channel and the AWGN
channel. These upper bounds compute the sum over all
error events e ∑

e

iePe (6)

where an error event is simply a path from the beginning
zero state to the ending zero state. The input Hamming
weight ie associated with the error event e counts the total
number of bit errors that all shifts of this error event can
induce on a fixed symbol position. Pe is the probability
that this path is closer to the received sequence than
the transmitted (all-zeros) sequence. Note that (6) is an
upper bound because Pe does not subtract probability for
situations where more than one path is closer to the
received sequence than the all-zeros sequence. For the bit
error channel with bit error probability p,

BER ≤ 1
k

{
∂T(W, I)

∂I

}
I=1,W=2(p−p2)1/2

(7)

For BPSK transmission of ±E1/2
s over the AWGN channel

with noise variance N0/2, we obtain

BER ≤ 1
k

Q

[(
2dfreeEs

N0

)2
]

edfreeEs/N0

×
{

∂T(W, I)
∂I

}
I=1,W=e−Es/N0

(8)

≤ 1
2k

{
∂T(W, I)

∂I

}
I=1,W=e−Es/N0

(9)

where the tighter bound of Eq. (8) requires knowledge
of the free distance dfree, but the looser bound of Eq. (9)
does not.

6. FINAL REMARKS

Although a block code has a well-defined blocklength,
convolutional codes do not. Convolutional codes are
sometimes considered to have infinite blocklength, and
this perspective is valuable for certain derivations, such
as the derivation of union bounds on BER presented in
Section 5. However, Sections 3.4 and 4.2 demonstrate that
most of the useful information for decoding a particular
input symbol lies within a relatively small interval of
output symbols called the decision depth. In two important
senses of blocklength, the latency required for decoding
and the general strength of the code, the (properly chosen)
decision depth is a good indicator the effective blocklength
of a convolutional code. The decision depth of standard
convolutional codes is small, certainly less than 50 for the
standard rate- 1

2 code with six memory elements in a single
shift register.

EOT309REV

8 CONVOLUTIONAL CODES

Shannon’s channel capacity theorem [18] (see also
the treatise by Cover and Thomas [19]) computes the
maximum rate that can be sent over a channel (or the
maximum distortion that can be tolerated for a given rate).
This theorem applies only as blocklength becomes infinite;
in general it is not possible to achieve the performance
promised by Shannon with small-blocklength codes.
Indeed, convolutional code performance is hampered by
their relatively small effective blocklength. For a bit error
rate (BER) of 10−5, they typically require about 4 dB of
additional signal-to-noise ratio (SNR) beyond the Shannon
requirement for error free transmission in the presence of
AWGN. In contrast, for a BER of 10−5 Turbo codes and
low-density parity-check codes, which both typically have
blocklengths on the order of 103 or 104, require less than
1 dB of additional SNR beyond the Shannon requirement
for error-free transmission in AWGN.

On the other hand, the performance of convolutional
codes is actually quite good, given their short blocklengths.
Applications such as speech transmission that require
very low latency continue to employ convolutional codes
because they provide excellent performance for their low
latency and may be decoded with relatively low complex-
ity. Furthermore, since Turbo codes contain convolutional
encoders as constituents, a good understanding of convo-
lutional codes remains essential even for long-blocklength
applications.

BIOGRAPHY

Richard D. Wesel received both B.S. and M.S. degrees
in electrical engineering from MIT in 1989 and the Ph.D.
degree in Electrical Engineering from Stanford Univer-
sity in 1996. From 1989 to 1991 he was with AT&T Bell
Laboratories, where he worked on nonintrusive measure-
ment and adaptive correction of analog impairments in
AT&T’s long-distance network and the compression of
facsimile transmissions in packet-switched networks. He
holds patents resulting from his work in both these areas.

From July 1996 to July 2002 he was an Assistant
Professor in the Electrical Engineering Department of the
University of California, Los Angeles. Since July 2002
he is an Associate Professor at UCLA. His research is
in communication theory with particular interests in the
topics of channel coding the distributed communication.
In 1998 he was awarded a National Science Foundation
CAREER Award to pursue research on robust and rate-
compatible coded modulation. He received an Okawa
Foundation Award in 1999 for research in information
and telecommunications, and he received the 2000 TRW
Excellence in Teaching Award from the UCLA School
of Engineering and Applied Science. Since 1999 he has
been an Association Editor for the IEEE Transactions

on Communications in the area of coding and coded
modulation.

BIBLIOGRAPHY

1. P. Elias, Coding for noisy channels, Proc. IRE Conv. Rec.
part 4 37–46 (1955) (this paper is also available in Ref. 2).

2. E. R. Berlekamp, ed., Key Papers in the Development of
Coding Theory, IEEE Press, 1974.

3. S. Lin and D. J. Costello, Jr., Error Control Coding: Funda-
mentals and Applications, Prentice-Hall, 1983.

4. R. Johannesson and K. Sh. Zigangirov, Fundamentals of
Convolutional Coding, IEEE Press, 1999.

5. G. D. Forney, Jr., Convolutional codes I: Algebraic structure,
IEEE Trans. Inform. Theory 16(6): 720–738 (Nov. 1970).

6. R. Johannesson and Z. Wan, A linear algebra approach to
minimal convolutional encoders, IEEE Trans. Inform. Theory
39(4): 1219–1233 (July 1993).

7. J. M. Wozencraft, Sequential decoding for reliable communi-
cation, Proc. IRE Conv. Rec. part 2 11–25 (1957).

8. R. M. Fano, A heuristic discussion of probabilistic decoding,
IEEE Trans. Inform. Theory 9: 64–74 (April 1963).

9. K. Sh. Zigangirov, Some sequential decoding procedures,
Probl. Peredachi Inform. 2: 13–25 (1966) (in Russian).

10. A. J. Viterbi, Error bounds for convolutional codes and an
asymptotically optimal decoding algorithm, IEEE Trans.
Inform. Theory 13: 260–269 (April 1967).

11. G. D. Forney, Jr., The Viterbi algorithm, Proce. IEEE 61:
268–278 (March 1973).

12. G. D. Forney, Jr., Convolutional codes II: Maximum likeli-
hood decoding, Inform. Control 25: 222–266 (July 1974).

13. L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, Optimal
decoding of linear codes for minimizing symbol error rate,
IEEE Trans. Inform. Theory 20(2): 248–287 (March 1974).

14. C. Berrou, A. Glavieux, and P. Thitimajshima, Near Shannon
limit error correcting coding and decoding: Turbo-codes, Proc.
Int. Conf. Communication, May 1993, pp. 1064–1070.

15. S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, A soft-
input soft-output APP module for the iterative decoding of
concatenated codes, IEEE Commun. Lett. 1(1): 22–24 (Jan.
1997).

16. J. B. Anderson and K. Balachandran, Decision depths of
convolutional codes, IEEE Trans. Inform. Theory 35(2):
455–459 (March 1989).

17. C. Fragouli, C. Komninakis, and R. D. Wesel, Minimality
under periodic puncturing, IEEE Int. Conf. Communication,
Helsinki, Finland, June 2001, pp. 300–304.

18. C. E. Shannon, A mathematical theory of communication,
Bell Syst. Tech. J. 27: 379–423, 623–656 (1948).

19. T. M. Cover and J. A. Thomas, Elements of Information
Theory, Wiley, 1991.

