
ECE 7680
Lecture 1 – Introduction to Information Theory

Objective: To learn what information theory is all about

Class stuff

• Syllabus

• Class time

• Course number if you have had this before

The digital communications model

In the transfer of digital information, the following framework is often used:

source → source
coder → channel

coder
→ channel → channel

decoder
→ source

decoder

• The source is the source of (digital) data.

• The source encoder serves the purpose of removing as much redundancy as
possible from the data. This is the data compression portion.

• The channel coder puts a modest amount of redundancy back in order to
do error detection or correction.

• The channel is what the data passes through, possibly becoming corrupted
along the way. There are a variety of channels of interest, including:

– The magnetic recording channel

– The telephone channel

– Other bandlimited channels

– The multi-user channel

– Deep-space channels

– Fading and/or jamming and/or interference channels

– The genetic representation channel

– Any place where there is the possibility of corruption in the data

• The channel decoder performs error correction or detection

• The source decoder undoes what is necessary to get the data back.

There are also other possible blocks that could be inserted into this model:

• A block to enforce channel-contraints. Some channels (e.g., the magnetic
recording channel) have constraints on how long a run of zeros or ones can
be. The constraints are enforced in what is often known as a line coder.

• A block to perform encryption/decryption.

• A block to perform lossy compression.
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The first of these areas fall well within the scope of information theory, but unfor-
tunately outside the scope of this class. I hope to get to the last one during the
quarter.

In light of the model presented here, several questions arise of engineering inter-
est:

• How can we measure the amount of information?

• How much can we compress?

• How do we compress?

• How do we avoid errors from affecting the performance?

• How fast can we send through the channel?

• What if data rate exceeds the capacity of the channel?

These are largely theoretical questions, and the answers are largely theoretical: it
may take years of research to turn the answers (often expressed as existence theo-
rems) into practical implementations.

History: Information theory was first published in 1948 by Claude Shannon.
He suggested some fundamentla limits on the representation and transmission of
information. Since that time, the results have been extended to cover a variety
of problem areas and people have worked (hard!) to find ways of achieving the
bounds that the theory specifies is possible. In a sense, then, information theory
has provided the theoretical motivation for many of the outstanding advances in
digital communications and digital storage. For example, how much information
can be sent over the phone system?

Besides the (almost) practical applications of the theory, there is great beauty
and elegance in the theorems, the study of which has intrinsic merit in a university
education.

The fundamental concept

One of the key (and initially counter-intuitive) concepts in information theory is
that information is conveyed by randomness. This is information as defined in some
mathematical sense, which is not identical to that which humans use. For example,
it is possible to measure the amount of information in a page of typewritten text.
Due to the structure of the English language, the amount of information conveyed
by each letter in a word is substantially less than the 7-bit ASCII representation
used. (It is somewhere over 2 bits/letter usually). There would be more information
conveyed (in the mathematical sense) if the letters were completely random, instead
of structured into words.

On the other hand, it is not too difficult to make the connection between ran-
domness and information. Consider the tossing of a coin: if you know the outcome
of the coin toss before it is tossed, then learning the outcome does not give you any
more information. If you have a biased coin that is heads 90% of the time, then
you gain very little information when you learn it is heads. On the other hand, you
gain a fair amount of information when it comes up tails; the information is thus
related somewhat to the degree of “surprise” at finding out the answer. Q: what
weighting of the coin gives the maximum amount of information on the average?

Another very important concept that we will say more about later is that of
typical sequences. In a sequence of bits of lenght n, there are some sequences
which are (in a sense to be made precise later) typical. For example, for a sequence
of coin-tossing outcomes for a fair coin, such as HHTHHTHTT, we would expect
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the number of heads and tails to be approximately equal (since the coin is fair).
For an unbiased coin, we would expect the proportion of heads to go with the
bias. Sequences that do not follow this trend, such as HHHHHHHHH, are thus
atypical. A good part of information theory is capturing this concept of typicallity
as precisely as possible and using it to concluding how many bits are needed to
represent sequences of data. The basic idea is to try to use bits to represent only
the typical sequences, since the others don’t come up very often. (Of course, when
they do come up, you don’t want to just throw them away.) This concept of typical
sequences is what the asymptotic equipartition property is all about, which is
the topic of Chapter 3.

Suppose we have a discrete random variable X, and x is some particular outcome
what occurs with probability p(x). Then we assign to that event x the information
that it conveys the uncertainty measure

uncertainty = − log p(x).

The base of the logarithms determines the units of information. If log2 is used, then
the units are in bits. If loge (natural log) is used, then the units are in nats. While
nats are not as familiar to engineers, it sometimes makes the computations slightly
easier. Q: how do you convert from bits to nats?
Example 1 If a random variable has two outcomes, say 0 and 1, which each occur

with probability p(0) = p(1) = 0.5, then each outcome conveys 1 bit of information.
(Think about it.)

On the other hand, suppose p(0) = 1 and p(1) = 0: that is, the outcome 1
never happens. Then the information conveyed when 0 happens is 0: we get no
information from it, because we knew all along that it would happen. However, the
information that we get one 1 happens is ∞, since we are totally surprised by the
occurrence of something that is impossible to happen. 2

What is more commonly useful is the average uncertainty provided by a random
variable X taking values in a space X .

Definition 1 The entropy H(x) os a discrete random variable X is

H(X) = −
∑
x∈X

p(x) log p(x).

2

The entropy of an r.v. is a measure of the uncertainty of the random
variable. It is a measure of the amount of information required on the average to
describe the random variable.
Example 2 Take a fair coin:

H(X) = −(0.5 log 0.5 + 0.5 log 0.5) = 1 bit.

For a biased coin (p(0) = 0.9),

H(X) = −(0.9 log 0.9 + 0.1 log 0.1) = 0.469 bits.

2

Example 3 What about a r.v. with three outcomes? 2

Notation: We shall use the operator E to denote expectation. If X ∼ p(x)
(read as: X is distributed according to p(x)), then for some function of the random
variable g(X),

Eg(X) =
∑
x∈X

g(x)p(x).
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(also known as the law of the unconcious statistician.) Recall EX, EX2, etc. Then
for g(x) = log 1/p(x),

H(X) = Eg(X) = E log 1/p(x)

Some simple discrete channel models

The binary symmetric channel:
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The parameter p is the probability of error. For many channels we can explicilty
compute p. For example, for BPSK

p = Q

(√
2Eb
N0

)

The channel is characterized by its conditional probabilities:

P (Y = 0|X = 0) = 1− p P (Y = 1|X = 0) = p

P (Y = 0|X = 1) = p P (Y = 1|X = 1) = 1− p


