
ECE 7680
Lecture 6 – Data Compression

Objective: We will apply what we know of entropy to the problem of data com-
pression. We will introduce and prove the important Kraft inequality, Shannon
codes, and Huffman codes.

Reading:

1. Read Chapter 5.

We are now ready to use the tools we have been building over the last few weeks
to work on the problem of efficient representation of data: data compression. In
order the made usable coding representations, we introduce a type of codes known as
instantaneous codes, which can be decoded without any backtracking. We present
the Kraft inequality, which is an important result on the lengths of codewords.
Then we show how to achieve a lower bound and introduce Huffman coding.

1 Some simple codes

Definition 1 A source code C for a random variable X is a mapping from X
to D∗, the set of finite-length strings of symbols from a D-ary alphabet. Let C(x)
denote the codeword corresponding to x and let l(x) denote the length of C(x). 2

Example 1 Suppose thatD = 2, D = {0, 1}, and X = {red,blue,green,black,purple}.
Then a code is:

• C(red) = 1

• C(blue) = 11

• C(green) = 0

• C(black) = 01

• C(purple) = 10

Suppose we want to send the string of symbols “green red black purple”. This
would be coded as 010110. Can this be uniquely decoded at the receiver? 2

Example 2 Let X be a r.v. with the following distribution and coding assignment:

• P (X = 1) = 1/2. Codeword: C(1) = 0

• P (X = 2) = 1/4. Codeword: C(2) = 10

• P (X = 3) = 1/8. Codeword: C(3) = 110

• P (X = 4) = 1/8. Codeword: C(4) = 111

The entropy is H(X) = 1.75, and the expected codeword length is 1.75 bits, the
same as the entropy. Also note that we can uniquely decode a sequence of bits. 2

Example 3 Now let the code be assigned as

• P (X = 1) = 1/2. Codeword: C(1) = 0

• P (X = 2) = 1/4. Codeword: C(2) = 0



ECE 7680: Lecture 6 – Data Compression 2

• P (X = 3) = 1/8. Codeword: C(3) = 11

• P (X = 4) = 1/8. Codeword: C(4) = 111

In this case, we cannot distinguish between X = 1 and X = 2. 2

Definition 2 A code is said to be non-singular is every element of the range of
X maps into a different string in D∗. That is, if xj 6= xi then C(xi) 6= C(xj). 2

The last example is a code that is a singular code.
We have met the idea of stringing together a bunch of codes in succession. This

has a definition:

Definition 3 An extension C∗ of a code C is a mapping from finite length strings
of X to finite length strings of D defined by

C(x1x2 · · ·xn) = C(x1)C(x2) · · ·C(xn),

where the RHS is the concatenation of the codewords. 2

Example 4 If C(x1) = 00 and C(x2) = 11, then C(x1x2) = 0011. 2

Definition 4 A code is called uniquely decodable if its extension is uniquely
decodable. 2

That is, if we string together a bunch of codewords, we want to be able to tell
where one codeword leaves off and another begins. The first example code presented
is not uniquely decodable.

There may be codes which are uniquely decodable, but in order to do the decod-
ing, the decoder may have to do some look-ahead and some backtracking in order
to come up with a unique sequence. In practice, this means the decoding hardware
is more complicated, and these kinds of codes are avoided where possible.

Definition 5 A code is called a prefix code or an instantaneous code if no
codeword is a prefix of any other codeword. 2

An instantaneous codeword can be decoded without look-ahead, since the end
of a codeword is immediately recognizable (it is not the beginning of any other
codeword). Instantaneous codes are “self-punctuating.”
Example 5 The table below illustrates three different codes assigned to the r.v.
X.

non-singular, but uniq. decod. but not
X uniquely decodable not instant. instantaneous
1 0 10 0
2 010 00 10
3 01 11 110
4 10 110 111

Take the uniquely-decodable but non-instantaneous code: if the first two bits
are 11, then we must look at following bits. If the next bit is a 1 then the first
symbol is 3. If the length of the string of 0s following the 11 is odd, then the first
codeword must be 110 and the first source symbol must be 4. If the length of the
string of 0s is even, the first source symbol must be 3. 2



ECE 7680: Lecture 6 – Data Compression 3

2 Kraft Inequality

In this section we develop an inequality on the lengths of the codewords that is
necessary and sufficient for a code to be an instantaneous code.

Theorem 1 (Kraft inequality) For any instantaneous code over an alphabet of size
D, the codeword lengths l1, l2, . . . , lm must satisfy

m∑
i=1

D−li ≤ 1.

Conversely, given a set of codeword lengths that satisfy this inequality there exists
an instantaneous code with these word lengths.

Proof Consider a D-ary tree representing the codewords: the path down the tree
is the sequence of symbols, and each leaf of the tree (with its unique associate
path) corresponds to a codeword. The prefix condition implies that no codeword
is an ancestor of any other codeword on the tree: each codeword eliminates its
descendants as possible codewords.

Let lmax be the length of the longest codeword. Of all the possible nodes at a
level of lmax, some may be codewords, some may be descendants of codewords, and
some may be neither. A codeword (leaf node) at level li has Dlmax−li descendants
at level lmax. Each of the descendant sets must be disjoint (because of the tree
structure). The total number of possible leaf nodes at level lmax is Dlmax . Hence,
summing over all codewords, ∑

all codewords

Dlmax−li ≤ Dlmax .

That is, ∑
D−li ≤ 1.

Conversely, given any set of codewords l1, l2, . . . , lm which satisfy the inequality,
we can always construct a tree. 2

3 Optimal codes

We deem a code to be optimal if it has the shortest average codeword length. The
goal, after all, is to use the smallest number of bits to send the information. This
may be regarded as an optimization problem. In designing the code, we must select
the codeword lengths l1, l2, . . . , lm so that that average length

L =
∑
i

pili

is as short as possible (less than any other prefix code), subject to the constraint
that the lengths satisfy the Kraft inequality (so it will be a prefix code). That is,
minimize

L =
∑
i

pili

subject ∑
D−li ≤ 1.



ECE 7680: Lecture 6 – Data Compression 4

We will make two simplifying assumptions to get started: (1) we will neglect integer
constraints on the codelengths; and (2) we will assume Kraft holds with equality.
Then we can write a Lagrange-multiplier problem

J =
∑
i

pili + λ
∑
i

D−li .

Taking derivative with respect to lj and equating to zero

∂J

∂lj
= pj − λD−lj logD = 0

leads to

D−lj =
pj

λ logD

Substituting into the constraint, ∑
i

pi
λ logD

= 1

so λ = 1/ logD, and

pi = D−li

and the optimal codelengths are l∗i = − logD pi. (The ∗ denotes the optimal value.)
Under this solution, the minimal average codeword length is

L∗ =
∑
i

pil
∗
i = HD(X).

(The subscript D denotes the log with respect to D.)
Of course, in practice the codeword lengths must be integer values, so the result

just obtained is a lower bound on the average codeword length. We will validate
this lower bound in the following theorem:

Theorem 2 The expected length L of any instantaneous D-ary code for a random
variable X satisfies

L ≥ HD(X)

with equality if and only if D−li = pi.

Proof Write

L−HD(X) =
∑
i

pili −
∑
i

pi logD
1
pi

= −
∑
i

pi logDD
−li +

∑
i

pi logD pi

=
∑
i

pi logD
pi
D−li

=
∑
i

pi logD
pi

D−li(
∑
j D
−lj )/(

∑
j D
−lj )

Now let ri = D−li/
∑
j D
−lj and c =

∑
iD
−li we have

L−HD(X) =
∑
i

pi logD
pi
ri
− logD c

= D(p‖r) + logD
1
c

≥ 0

since relative entropy is nonnegative and c ≤ 1 (Kraft inequality). 2



ECE 7680: Lecture 6 – Data Compression 5

4 Bounds on the optimal code

The theorem just proved shows that the length must be greater than HD(X). We
can now prove that a physically implementable instantaneous code (that is, a code
with integer codeword lengths), we can find an upper bound on the code length:

H(X) ≤ L < H(X) + 1.

That is, the overhead due to the integer codeword length it not more than one bit.
The codeword lengths are found by

li = dlogD

(
1
pi

)
e

where dxe is the smallest integer ≥ x. These codeword lengths satisfy the Kraft
inequality: ∑

i

D−li =
∑
i

D
−dlog 1

pi
e ≤

∑
i

D
− log 1

pi =
∑
i

pi = 1

The codewords lengths satisfy

logD
1
pi
≤ li < logd

1
pi

+ 1

Taking the expectation through we get

HD(X) ≤ L < HD(X) + 1.

The next trick is to reduce the overhead (of up to one bit) by spreading it over
several symbols. Suppose we are sending a sequence of symbols, drawn indepen-
dently according to the distribution p(x). A sequence of n symbols can be regarded
as a symbol from the alphabet Xn.

Let Ln be the expected codeword length per input symbol:

Ln =
∑

x∈Xn
p(x1, x2, . . . , xn)l(x1, x2, . . . , xn) =

1
n
E(X1, X2, . . . , Xn).

Applying the inequality to the codelengths:

H(X1, X2, . . . , Xn) ≤ El(X1, X2, . . . , Xn) ≤ H(X1, X2, . . . , Xn) + 1

Since the symbols are i.i.d., H(X1, X2, . . . , Xn) = nH(X1). Dividing through by n
we obtain

H(X) ≤ Ln ≤ H(X) +
1
n
.

By choosing the block size sufficiently large, the average code length can be made
arbitrarily close to the entropy.

The next observation is that if the symbols are not independent, we can still
write

H(X1, X2, . . . , Xn) ≤ El(X1, X2, . . . , Xn) ≤ H(X1, X2, . . . , Xn) + 1.

Dividing through by n we obtain

H(X1, X2, . . . , Xn)
n

≤ Ln ≤
H(X1, X2, . . . , Xn)

n
+

1
n
.



ECE 7680: Lecture 6 – Data Compression 6

If X is a stationary stochastic process, then taking the limit yields

Ln → H(X ).

Another question is what if the distribution used to design the codes is not the
same as the actual distribution? Consider the code designed by l(x) = d 1

q(x)e, for
the distribution q(x), while the true distribution is p(x).

Theorem 3 The expected length under p(x) of the code designed under l(x) =
d 1
q(x)e satisfies

H(p) +D(p‖q) ≤ Epl(X) ≤ H(p) +D(p‖q) + 1.

That is, the mistaken distribution costs us an extra D(p‖q) bits per symbol to code.
Proof

El(X) =
∑
x

p(x)dlog
1

q(x)
e

<
∑
x

p(x)
(

log
1

q(x)
+ 1
)

=
∑
x

p(x) log
p(x)
q(x)

1
p(x)

+ 1

= p(x) log
p(x)
q(x)

+
∑
x

p(x) log
1

p(x)
+ 1

= D(p‖q) +H(p) + 1.

The lower bound is similar. 2

5 Kraft inequality for uniquely decodable codes

The set of instantaneous codes is smaller than the set of uniquely decodable codes,
so we might think that we might be able to obtain a lower average codeword L for
uniquely decodable codes. However, the point of this section is that this is not the
case. Hence, we may as well just use instantaneous codes, since they are easier to
decode.

6 Huffman codes

Huffman codes are the optimal prefix codes for a given distribution. What’s more,
if we know the distribution, Huffman codes are easy to find. The code operates
from the premise of assigning longer codewords to less-likely symbols, and doing it
in a tree-structured way so that the codes obtained are prefix-free.
Example 6 Consider the distribution X taking values in the set X = {1, 2, 3, 4, 5}

with probabilities .25, .25, .2, .15, .15, respectively.
At each stage of the development, we combine the two least-probable symbols

(in this case, for a binary code) into one symbol.

1. At the first round, then, the .15 and .15 are combined to form a symbol with
probability .3. The set of probabilities (in ordered form) is .3, .25, .25, .2.

2. Now combine the lowest two probabilities: .2 + .25 = .45. The ordered list of
probabilities is .45, .3, .25.



ECE 7680: Lecture 6 – Data Compression 7

3. Combine the two lowest probabilities: .25 + .3 = .55. The ordered list of
probabilities is .55, ..45.

4. Combine these to obtain the total probability of 1. We are done!

Now assign codewords on the tree. The average codelength is 2.3 bits. 2

Codes with more than D = 2 symbols can also be built, as described in the
book.

Proving the optimality of the Huffman code begins with the following simple
lemma:

Lemma 1 For any distribution, there exists an optimal instantaneous code (of
shortest average length) that satisfies the following properties:

1. If pj > pk, then lj ≤ lk.

2. The two longest codewords have the same length.

3. The two longest codewords differ only in the last bit, and correspond to the
two least-likely symbols.

Proof (Sketch)

1. Simply swap lengths.

2. If the two longest are not of the same length, trim the longer: still a prefix
code.

3. If not siblings on the tree (i.e., do not differ just in one bit), then we can remove
a bit from the longest code, which contradicts the optimality property.

2

For a code on m symbols, assume (w.o.l.o.g.) that the probabilities are ordered
p1 > p2 > · · · > pm. Define the merged code on m − 1 symbols by merging the
two least probable symbols pm, pm−1. The codeword on this merged symbol is the
common prefix on the two least-probable (longest) codewords, which, by the lemma,
exists. The expected length of the code Cm is

L(Cm) =
m∑
i=1

pili

=
m−2∑
i=1

pili + pm−1(lm−1 + 1) + pm(lm + 1)

=
m−2∑
i=1

pili + pm−1(lm−1 + 1) + pm(lm + 1)

=
m−1∑
i=1

pili + pm(lm + 1)

= L(Cm−1) + pm(l′m + 1).

The optimization problem on m symbols has been reduced to an optimization prob-
lem on m − 1 symbols. Proceeding inductively, we get down to two symbols, for
which the optimal code is obvious: 0 or 1.



ECE 7680: Lecture 6 – Data Compression 8

7 Arithmetic coding

Go over idea of arithmetic coding. Start with p0 = .75, p1 = .25 and explain
procedure for encoding and decoding. Then take case of p0 = 0.7 and p1 = 0.3.
Generalize to multiple (≥ 2) symbols.

Discuss numerical problems.
Handouts.

8 Run-length coding

Suppose you want to encode the information on a regular fax machine. There are
two possible outputs, white or black. Most paper consists of a white background
with black lettering, so the proportion of white letters tends to be quite large.
However, when black appears, it often appears as a run.

One potential way of doing data compression on such a source is by means of
run-length coding. Sequences of runs are encoded into a count. We have to worry
about how long the sequences can be, so there is a maximum run-length allowable.

What fax machines actually do is run-length coding following by Huffman cod-
ing. This is called Modified Huffman Coding.

9 Lempel-Ziv Coding

Lempel-Ziv coding (and its variants) is a very common data compression scheme.
It is based upon the source building up a dictionary of previously-seen strings, and
transmitting only the “innovations” while creating new strings.

For the first example, we start off with an empty dictionary, and assume that
we know (somehow!) that the dictionary will not contain more than 8 symbols.
Suppose we are given the string

1011010100010...

The source stream is parsed until the shortest string is encountered that has not
been encountered before. Since this is the shortest such string, all of its prefixes
must have been sent before. The string can be coded by sending the index from
the dictionary of the prefix string and the new bit. This string is then added to the
dictionary.

To illustrate, 1 has not been seen before, so we send the index of its prefix (set
at 000), then the number 1. We add the sequence 1 to the dictionary. Then 0 has
not been seen before, so we send the index of its prefix (000) and the number 0.
We add the sequence 0 to the dictionary. The sequence 11 has a prefix string of 1,
so we send its index, and the number 1. Proceeding this way, the dictionary looks
like this:

The Lempel-Ziv string dictionary
index contents
000 null
001 1
010 0
011 11
100 01
101 010
110 00
111 10



ECE 7680: Lecture 6 – Data Compression 9

The encoded sequence is

(000, 1)(000, 0)(001, 1)(010, 10)(100, 0)(010, 0)(001, 0)

Observe that we haven’t compressed the data: 13 bits went in, and 28 bits came out.
But if we had a longer stream of data (and a bigger dictionary), data compression
could result. In fact, the point that made fame and fortune for Lempel and Ziv is
that they proved that asymptotically, the output rate approaches the entropy rate
for a stationary source. (We could spend a year working through their proof.) The
bottom line is the following theorem:

Theorem 4 Let {Xi}∞−∞ be a stationary ergodic stochastic process. Let l(X1, X2, . . . , Xn)
be the Lempel-Ziv codeword length associated with X1, X2, . . . , Xn. Then

lim sup
n→infty

1
n
l(X1, X2, . . . , Xn) ≤ H(X ) with probabilility 1.

An obvious improvement on this basic explanatory example is to use fewer bits
at the beginning to send the index information, because the table is known not to
need that many bits yet.

There are several implementation issues to refine the performance, including:

• Compression performance vs. table size.

• Dictionary initialization: start empty, or start with the alphabet.

• Adaptive index sizing

• Dictionary organization and search strategies (speed vs. storage)

• Adaptation: throw away sequences that are rarely used.

Here is another example on a three-symbol alphabet {a, b, c}. In this case, the
dictionary is assumed to be initialized to contain the alphabet of the source. The
sequence is

ababcbababaaaaa...

The output is

(1, b)(4, c)(2a)(6, b)(1, a)(8, a)...

and the dictionary is

The Lempel-Ziv string dictionary
index contents
1 a
2 b
3 c
4 ab
5 abc
6 ba
7 bab
8 aa
9 aaa



ECE 7680: Lecture 6 – Data Compression 10

10 Adaptive Huffman coding

The Huffman coding algorithm works when the source is stationary and the prob-
abilities are known. In the circumstance in which the source is non-stationary or
the probabilities are not known in advance, then the adaptive Huffman coding al-
gorithm is a possibility. In this case, the relative probabilities of the symbols are
estimated by keeping counts of the occurrences of the source symbols. When the
counts reach a point that the tree is no longer optimal, it is shifted to provide a
new Huffman code. Since the operation can take place simultaneously at both the
transmitter and the receiver, decoding can take place. A paper will be handed out
describing the technique. (This might make a good paper project.) It is believed
(by me) that the method is flawed.


