Information Theory and Coding (66.24)
Arithmetic in GF(2)

Group
A set G on which a binary operation * is defined is called a Group if:

1. * is associative

2. G contains an element such that, for any ¢ in G axe = e*xa = a
(identity)

3. For any element a in G exits a’ shuch that a xa’ = a’ x a = e (inverse)
i) The identity is unique. ii) The inverse is unique. Prove.
Rings

A set of elements R on which two binary operations, called addition ”+”

”» "

and multiplication ”.” are defined satisfying the following conditions:

1. R is a commutative group under +
2. Multiplication is associative

3. Multiplication is distributive over addition a.(b+ ¢) = a.b + a.c
Fields

A set of elements F forming a ring satisfying the following condition:

1. The set of nonzero elements in F is a commutative Group under ”.”

The characteristic A of the field GF(q) is the smallest positive integer
shuch that >3 ;1 =0

1. The characteristic A is prime.

2. GF()) is also a field, then, is a subfield of GF(q)



Table 1: Module-2 Addition

+10 1
010 1
111 0

Table 2: Module-2 Multiplication

.10 1
0]0 O
110 1

3. The characteristic of GF(2) is 2

The order of a field element a is the smallest integer n shuch that o™ =1
i) Being a a non zero element in GF(q), then a?~! = 1
ii) Let n be the order of a, then n divides ¢ — 1

Fundamental Definition

In a field GF(q), a nonzero element a is said to be primitive if the order
of ais q—1.

Fundamental Property

Every finite field has a primitive element. The powers of a primitive
element generate all the nonzero elements of GF(q).

Vector Spaces

Let V be a set of elements on which a binary operation ”+4” is defined.
Let F be a field. A multiplication operation ”.” between F an V is also
defined. The set V is called a vector space if:

1. V is a commutative Group under +

2. For any element a in F and any element v in V, a.v is an element in

v
3. a.(u+v)=au+av, (a+b.v=av+bv
4. (a.b)v = a.(b.v)



Linear Codes

Linear block codes are a vector space on GF(2)
Block codes in systematic form

c = boby--bp_g_1momy---mp_q
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Property 1

s=eHT
Property 2

All error patterns that differ by a code have the same syndrome

e = e+ ¢

eiHT:eHT

Hamming distance

d(c1,c2) number of bits of difference

Hamming weight

w(ci) number of nonzero bits

Hamming minimum distance d,,;,,, the smallest Hamming distance be-
tween pairs.

1. The minimum distance coincides with the small-
est Hamming weight of the nonzero code vec-
tors Why?

2. The minimum distance is related to the number
of linearly independendent column vectors of H
Why (Hint: see (5))?

3. A linear block code {n, %k} of minimum distance
d.in can detect error patterns of weight d,,;, — 1
or less

4. A linear block code {n,k} can correct pattern

errors of weight ¢ or less iif ¢ < [J(dyin — 1)| Why?
Remember jointly typical sequences decoding.

Syndrome decoding:

The set of 2" possible outcomes is partitioned in 2¥ disjoint subsets Dy, D, - - -

Each D; is built by adding each error pattern of weight ¢ or less to the cod-
word c;.

In the same way, cosets are defined by adding each codeword c; to the
error pattern e; corresponding to one of the 2% syndromes. The error
pattern correspondig to each coset is called coset leader.



Decoding procedure: Given a received syndrome, identify the coset, then
choose the coset leader eg. The estimated codewrod is r + eg.

Example: Hamming Codes (See [1], p. 639)

Further reading. [2] Chap. 2, [1] Chap.10, [3] Chap. 2-3.
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